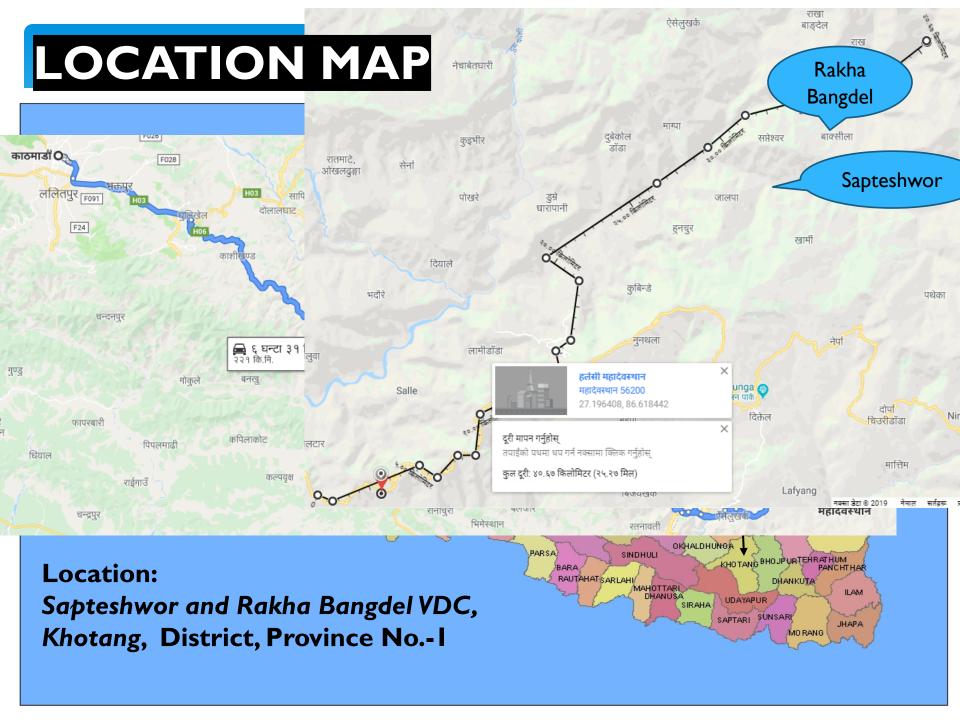
Lower Mid Rawa Khola Hydroelectric Project

4.00 MW

Khotang, Nepal


Developer: Lower Mid Rawa Khola Hydropower Project Pvt. Ltd., Kathmandu

MODES OF PRESENTATION

- Project Description
- 2. Hydrology
- 3. Power and Energy
- 4. Project Cost
- 5. Power Evacuation
- 6. Site Photographs

PROJECT DESCRIPTION

PROJECT OVERVIEW

Location: Sapteshwor and Rakha Bangdel VDC, Khotang, District, Province No.-I

Accessibility:

Kathmandu to Hurlung 245 km (black topped)

Hurlung to Project Area /

Powerhouse area 20 km (gravel road)

Design discharge (Q42.44%): 3.80 m³/s

Gross head: 140.12m

Net Head: 130.00m

SURVEY LICENSE

Survey License Received license on 2074/12/29

License No: 997

Capacity: 4.00 MW

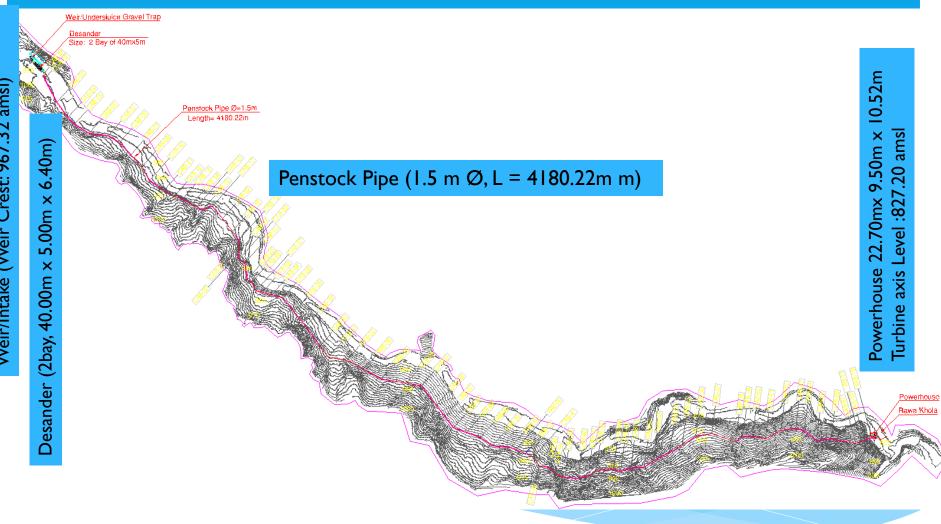
Company Registration: 2076/03/02 (June 17, 2019)

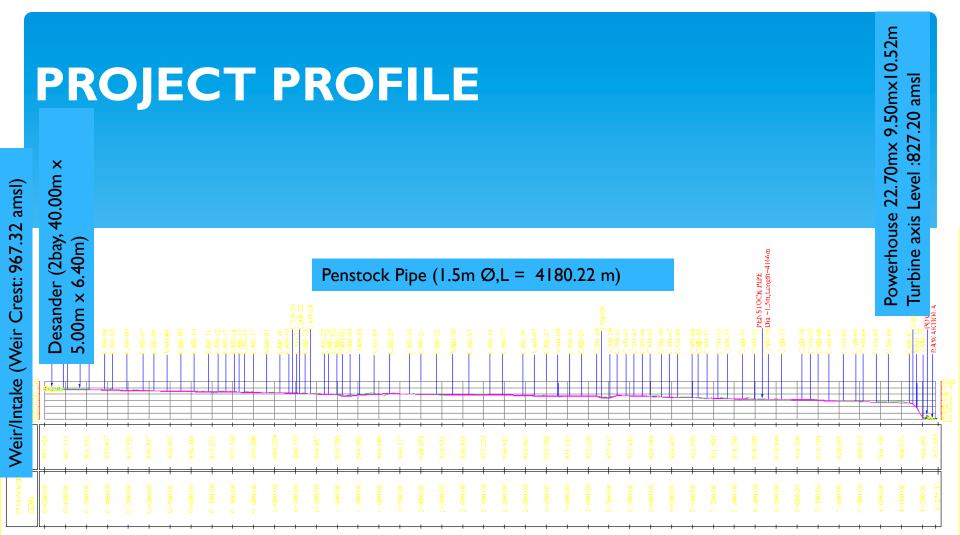
Company Name: Lower Mid Rawakhola Hydropower Project Pvt. Ltd

Current Stage: Applied for PPA (On July 29, 2019)

This is fast Moving Project

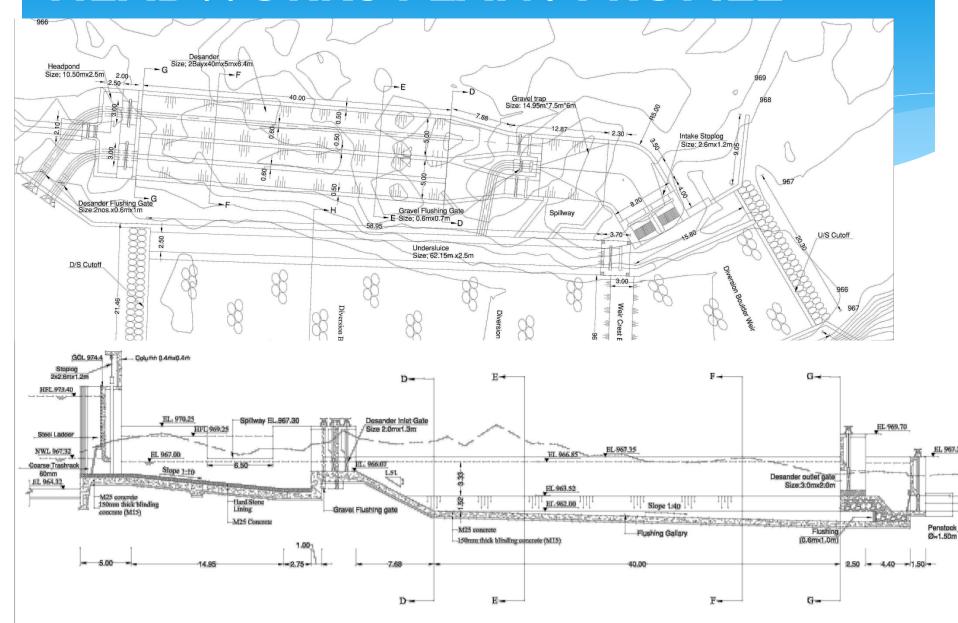
Strength of the project

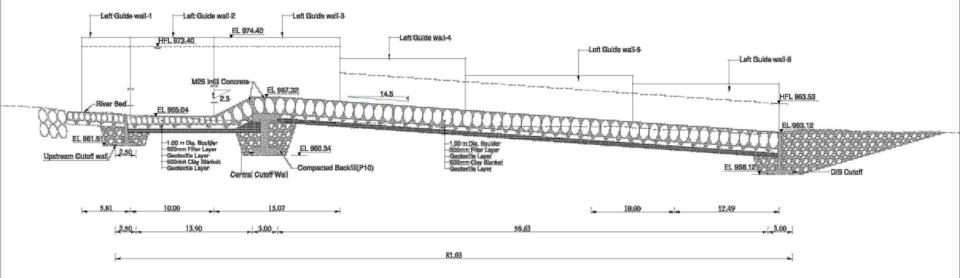

- * Access road available
- Far from main settlement area and less social problem
- * Aiselukhark Gounpalika is decided to invest 10% in equity
- * Aiselukharka Gaunplaika ward No 1, is ready to work jointly with the project
- * Free construction materials available: stone, sand, gravel and soil are in construction site
- Strong management team
- Fast moving project
- * Payback start from the next year of construction completion


Risk to the Project

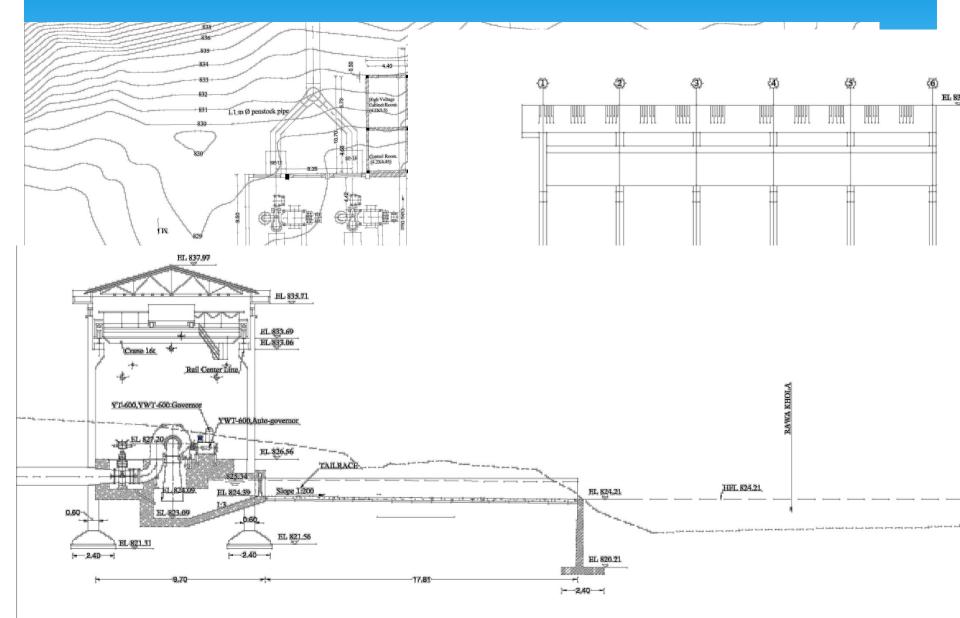
Challenges:

- * Meeting timeline for the project
- * Timely Availability of fund
- * Possible Political unrest
- * Timely supply of electromechanical equipment


PROJECT LAYOUT



CTLATNIA CT. + 04,000,00 - 14,262,90


HEADWORKS PLAN / PROFILE

WEIR SECTION

POWERHOUSE PLAN PROFILE SECTION

SALIENT FEATURES OF THE PROJECT

Type : Run-of-the- river

Design Discharge (Q56) : 3.80 m³/sec

Gross head : 140.12 m

Net head : 130.00 m

Installed Capacity : 4.00 MW

Length of Penstock Pipe : 4180.22 m

Total Saleable Energy : 24.08 GWh

Turbine : Horizontal Axis Francis Turbine (2 units),

Overall Efficiency : 86.42%

Turbine axis level : 827.20 masl

Transmission Line : About 7km Single circuit/S to Baghshila

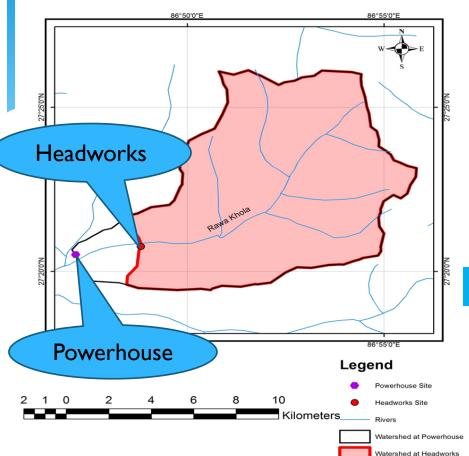
Substation-33 kV

Access road : About 10 Km from Sapteshwor to

Powerhouse

Project Cost : 833.543 mill. NRs (208.385 mill. NRs / MW)

IRR : 15.47%


EIRR : 22.97%

Payback period : 11.96 years (discounted)

HYDROLOGY

CATCHMENT PHYSIOGRAPHY

Catchment Area of Rawa khola at Proposed Headworks and Powerhouse Site

✓ Rawa Khola is a perennial snow fed river originating from Makalu Barun National Park

Catchment area at Intake = 102.46 Km2

Catchment area at Powerhouse = 109.51 Km2

Elevation	Inta	ake	Powerhouse		
Elevation	Area (Km²)	%	Area (Km²)	%	
5000m-	12.27	12.00%	12.27	11.20%	
3000m	12.27	12.00%	12.27	11.20%	
<3000m	90.19	88.00%	97.25	88.80%	
Total	102.46	100.00%	109.51	100.00%	

PRECIPITATION (BASIN RAINFALL) DETAIL

Raingauge station lying in the vicinity of the catchment

Index	Station	tation Record		Annual	Monsoon Ppt
No.	name	Length	Period	precipitation (mm)	
1204	Aiselukhark	35	1975-2009	2256	1815
1222	Diktel	36	1975-2010	1436	1097
1324	Bhojpur	30	1974 – 2003	1245	861
1325	Dingla	35	1975-2009	1923	1455

Details of Gauging Stations Considered for Regional Analysis

Name of Divos	Station		Elevation	Area	Reco	ord
Name of River	No.	Location	(m)	(Km²)	Length (yrs)	Period
Sabhaya khola	602	Tumlingtar	305	409	42	1974 - 2015
Hinwa khola	602.5	Pipletar	300	154	33	1974 - 2006
Rosi khola	640	Panauti	1480	89	24	1964 - 1987
Khimti Khola	650	Rasnalu	1120	343	41	1964 - 2013
Mai	728	Rajdwali	609	396	26	1983 - 2008

LONGTERM MEAN MONTHLY FLOW

Total Estimated Long term Mean Monthly and Yearly Flow (m³/s) by Different Methods at the Intake Site of Lower Mid Rawa Khola HEP

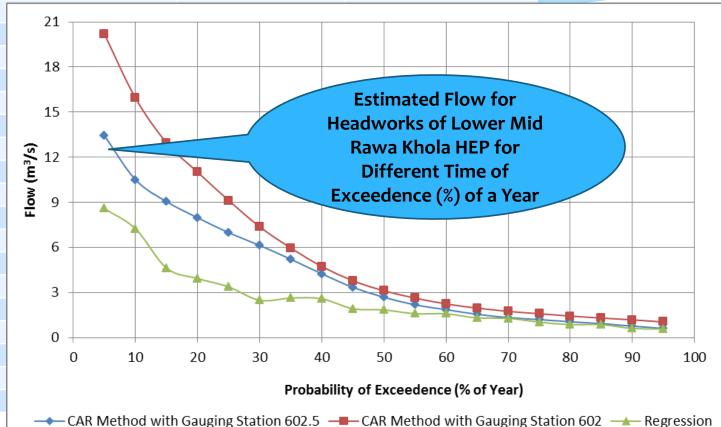
	1	Fl	ow (cumecs)		
Months	Car Method with Gauging	CAR Method with Gauging Station	Regional		
12 10 8 4 2		Mean Monthly Flow Hydrograph adopted Proposed Headworks Lower Mid Rawa Kho	s of	g Sep Oct	CAR Method with Gauging Station 602 CAR Method with Gauging Station 602.5 Regional Analysis Hydest Modified Hydest Recommende

CONTINUE.....

Long Term Mean monthly flow in terms of Nepali Calendar

Month	Discharge (m³/s)
Baisakh (Apr/May)	2.10
Jestha (May/Jun)	4.38
Jestha I to 15	3.31
Jestha 16 to 31	5.39
Ashadh (Jun/Jul)	8.50
Shrawan (Jul/Aug)	10.90
Bhadra (Aug/Sep)	10.41
Ashwin (Sep/Oct)	7.38
Kartik (Oct/Nov)	4.24
Mangsir (Nov/Dec)	2.57
Mangsir I to 15	2.85
Mangsir 16 to 29	2.28
Poush (Dec/Jan)	1.69
Magh (Jan/Feb)	1.21
Falgun (Feb/Mar)	0.98
Chaitra (Mar/May)	1.03
Average	4.62

Rainfall runoff coefficient calculation using Isohyetal method at Lower Mid Rawa Khola HEP Headworks


Catchment Area (Km²)	102.46
Average Annual	1902
Precipitation (mm)	
Average Annual	
Discharge	4.66
(m³/s)	
Annual Runoff Volume (mm)	1434.4
Runoff / Rainfall	0.75

FLOW DURATION CURVE

Estimated Available Flow (m³/s) for Different Percentile of Time Exceedence of a Year at the Proposed Intake Site from CAR Method and Regression Analysis

Probability of
Excedence (%)
5
10
15
20
25
30
35
40
42.44
45
50
55
60
65
70
75
80
85
90
95

CAR Method with	CAR Method with	Pograssian Analysis	
Gauging Station 602.5	Gauging Station 602	Regression Analysis	
13.42	20.17	8.58	
10.50	15.93	7.23	

EXTREME HYDROLOGY Low Flows at the Proposed Headworks Site of Lower Mid Rawa Khola HEP, m³/s

Return Period,	Duration						
yrs	I Day	7 Days	30 Days	Monthly			
2	1.08	1.159	1.362	1.465			
10	0.679	0.721	0.914	1.001			
20	0.611	0.642	0.832	0.917			

Estimated Flood Flow from Reference Station #602 and #602.5 at the Proposed Intake Site, m³/s

	Flood Flow (m ³ /s) at the Proposed Intake Site							
Return Period in yrs	With Re	eference to	G Station	With Re	With Reference to G Station			
		#602		#602.5				
	GEV	3P-LN	LPIII	GEV	3P-LN	LPIII		
2	124	118	132	29	29	29		
5	193	198	197	38	39	39		
10	257	279	244	44	44	44		
20	339	383	294	49	50	49		
50	484	558	364	55	56	55		
100	632	725	420	59	61	59		
200	825	931	482	63	65	63		
500	1171	1264	569	67	71	67		

CONTINUE.....

Estimated Flood Flow from Reference Station #602 and #602.5 at the Proposed Powerhouse Site, m³/s

	Floo				d Flow (m ³ /s) at the Proposed Powerhouse Site					
Re	turn Perio	od in yrs	With Reference to G Station #602 With Reference to G Station #602.5				Station			
			Headwa	orks Site			OF.//	owerhouse Sit	- I BIII	
	Return Period		Headworks Site Hydest		Modified Hydest		Hydest		Modified Hydest	
	in yrs	Daily Estimated Flo		caneous lydest and I	Modified Hydest Met	hods d	Daily at Intake and Po	Instantaneous werhouse site, m³/s		
	2	60	9	9	110		64	106	117	
	5	91	I	64	193		97	175	205	
	10	113	2	14	258		120	227	274	
	20	134	2	67	329		143	282	348	
	50	164	3-	41	432		175	361	456	
	100	188	4	02	529		200	425	559	
	200	212	4	67	611		226	493	645	
	500	246	5	61	747		261	591	787	
	1000	273	6	37	861		290	671	906	

POWER AND ENERGY GENERATION

ENERGY CALCULATION PARAMETER

Weir crest level = 967.320 m

Turbine axis level = 827.20 m

Gross head = 140.12 m

Design discharge = $3.80 \text{ m}^3/\text{s}$ (Q42.44%)

Downstream release = $0.095 \text{ m}^3/\text{s}$

Outage = 5%

Turbine efficiency = 90%

Generator efficiency = 97%

Transformer efficiency = 99%

Overall efficiency = 86.42%

AVILABLE DISCHARGE

Month	Days	River flow (m³/s)	Available flow (m³/s)	Plant discharge (m³/s)
Baisakh	31	2.10	2.00	2.00
Jestha	31	4.38	4.28	3.80
Ashadh	31	8.50	8.40	3.80
Shrawan	32	10.90	10.80	3.80
Bhadra	31	10.41	10.31	3.80
Ashwin	31	7.38	7.28	3.80
Kartik	30	4.24	4.14	3.80
Mangsir	29	2.57	2.47	2.47
Poush	30	1.69	1.59	1.59
Magh	29	1.21	1.11	1.11
Falgun	30	0.98	0.88	0.88
Chaitra	30	1.03	0.93	0.93

ENERGY TABLE

Design discharge:

Downstream release

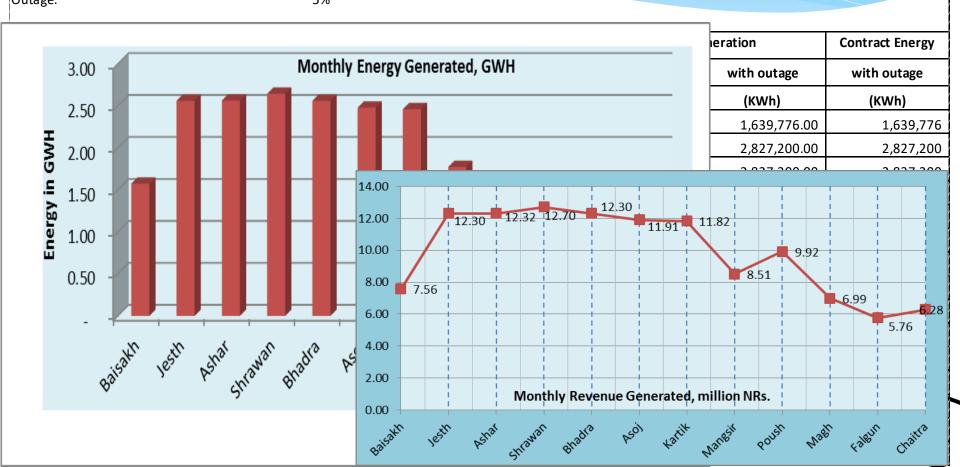
0.098 m³/s

Gross Head

140.12 m

Turbine Efficiency

Generator Efficiency

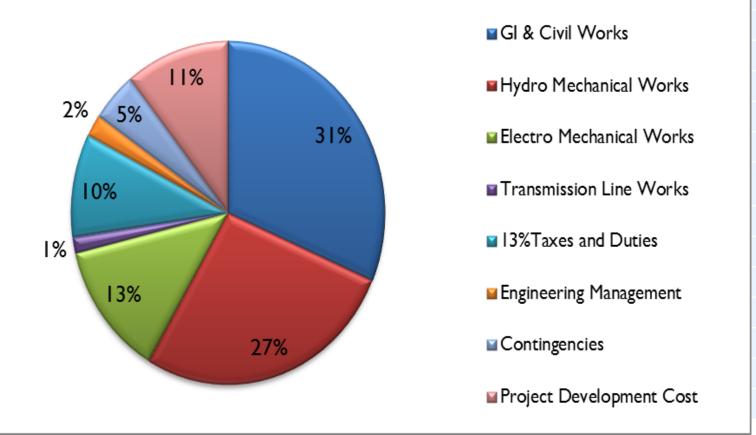

97.00%

Transfomer Efficiency

99.00%

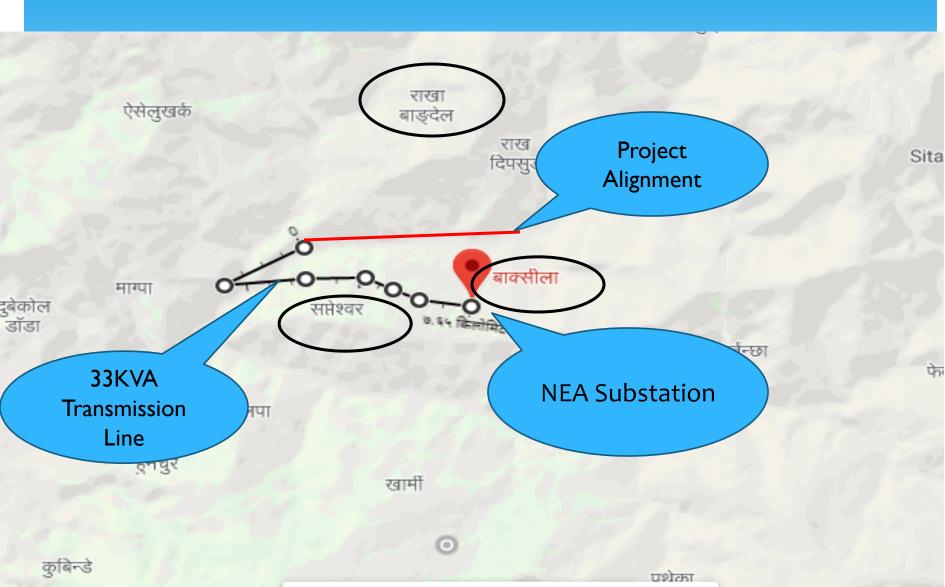
Outage:

5%

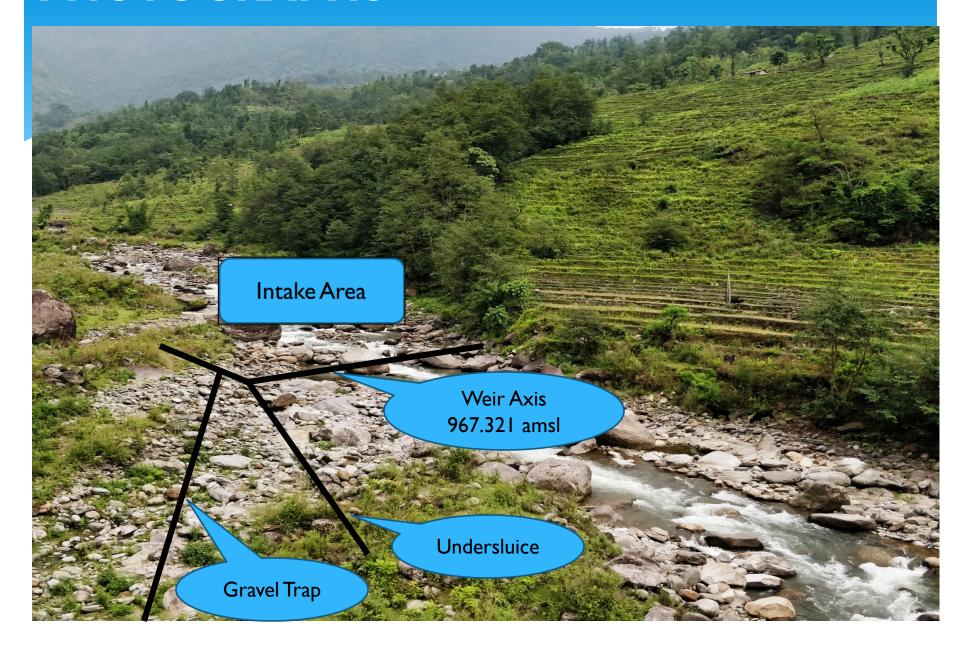


PROJECT COST

PROJECT COST


Description	Amount
General Item	36,400,000.00
Civil Works	189,211,570.87

POWER EVACUATION PLAN


TRANSMISSION LINE

CONCLUSIONS

- ✓ Recording of gauge heights, regular measurement of discharges and sediment sampling at the gauging station should be continued at Rawa Khola for accurate Energy Calculations.
- ✓ Immediate action for land procurement, planning for construction of infrastructure facilities and preparation of site for the construction of the project should be done in time which will result easy to mobilization contractor soon .
- ✓ The power generated from the project shall be evacuated to the switchyard of the Baghshila S/S of NEA, Khotang with 33 kV switching arrangement for which about 7 KM transmission line needs to be constructed timely.
- ✓ The Project is environmentally, Technically and Financial feasible and worth to invest to develop.

PHOTOGRAPHS

GAUGE FIXING AND WATER MEASUREMENT

Intake Site

Reasons for Investment in Hydro

- * Guaranteed Buyer (PPA signed before Project starts)
- * Attractive Rate of Return on investments (25-30% or even 35%)
- Availability of Bank finances
- * Cross-border electricity transmission lines and regional power trade agreements has opened up unlimited opportunities to produce and trade power in the region
- * Green Energy is preferred energy. It is the future
- * Tax Preferences for income from Hydro plans
- * Low staff and low operational and maintenance costs allowing companies to manage multiple projects at once
- * Long term Cash Flow could replace your retirement income

